Qihai Shu:Fluid compositions reveal fluid nature, metal deposition mechanisms, and mineralization potential: An example at the Hao【Geology,2021】
Apr 1, 2021 Views:1441


Fluid inclusion compositions obtained from laser ablation–inductively coupled plasma–mass spectrometry at the Haobugao Zn-Pb skarn in northeastern China provide constraints on fluid origin, evolution, and metal deposition mechanisms and an example of evaluating mineralization potential. Metal concentrations in the prograde fluids were high (up to 1.4 wt% Zn and 1.8 wt% Pb) but remained in solution, likely due to the high temperatures (440–575 °C) and salinities (35.4–45.3 wt% NaCl equivalent). Absolute concentrations of elements (e.g., Rb and Na) and mass ratios (e.g., Zn/Na and K/Na) reveal that the early, prograde fluids were magmatic, consistent with the oxygen isotope composition of fluids (δ18OH2O = 5.5‰–8.5‰). Later mixing with a meteoric fluid caused dilution and Zn-Pb deposition, as revealed by lowered element concentrations and Pb/(Na + K) and Zn/(Na + K) ratios in the sulfide-stage fluid inclusions. Elevated Ca/K ratios in sphalerite-hosted inclusions indicate fluid-carbonate reactions that buffered fluid pH, also facilitating Zn-Pb precipitation. Although cassiterite and molybdenite occur locally at Haobugao, mass balance calculation shows low metal endowment (maximum 2900 t Sn and 2200 t Mo) of the system. Furthermore, the generally unchanged Sn/(Na + K) and Mo/(Na + K) ratios from pre- to late-mineralization fluids suggest that the fluids were never saturated in Sn and Mo. Therefore, finding much Sn or Mo at Haobugao is unlikely. This demonstrates a potential tool for evaluating the metal endowment of a mineral prospect, which may guide exploration.